Identifying the Effect of PWHT on Strength of Laser Beam Welding Joints of AA2024 Aluminum Alloy
The corrosion-resistant and strength-to-weight ratios are the primary factors in high-strength aluminum alloy. Hence, the AA2024 alloy is a possible candidate in the critical structural fabrication industry. The traditional joining method is ineffective for welding aluminum alloys. Higher melting po...
Gespeichert in:
Veröffentlicht in: | ASME Open Journal of Engineering 2022-01, Vol.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The corrosion-resistant and strength-to-weight ratios are the primary factors in high-strength aluminum alloy. Hence, the AA2024 alloy is a possible candidate in the critical structural fabrication industry. The traditional joining method is ineffective for welding aluminum alloys. Higher melting point and temperature variations cause alloy isolation; porosity and hot cracking are caused by melting point variations. As a result, to fabricate joints, a light heat source laser beam was used. The weaker area of most fusion-welded joints was the heat-affected zone (HAZ). The post-weld heat treatment was used at HAZ to improve the properties. According to the experimental findings, the joint welded with solution treatment and artificial aging had a maximum tensile strength of 358 MPa. Re-precipitation of precipitates may accomplish in HAZ. |
---|---|
ISSN: | 2770-3495 2770-3495 |
DOI: | 10.1115/1.4053496 |