Nondestructive Photoelastic and Machine Learning Characterization of Surface Cracks and Prediction of Weibull Parameters for Photovoltaic Silicon Wafers
A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified through thickness infrared photoelastic...
Gespeichert in:
Veröffentlicht in: | Journal of engineering materials and technology 2022-07, Vol.144 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified through thickness infrared photoelastic images using a support vector machine-learning algorithm. Characteristic wafer strength is shown to vary with the angle of applied uniaxial tensile load, showing greater strength when loaded perpendicular to the wire speed direction than when loaded along the wire speed direction. Observed variations in characteristic strength and Weibull shape modulus with applied tensile loading direction stem from the distribution of crack orientations and the bulk stress field acting on the microcracks. Using this method, it is possible to improve manufacturing processes for silicon wafers by rapidly, accurately, and nondestructively characterizing large batches in an automated way. |
---|---|
ISSN: | 0094-4289 1528-8889 |
DOI: | 10.1115/1.4052673 |