A Parametric Study on the Fluid Dynamics and Performance Characteristic of Micronozzle Flows

This study investigates the fluid dynamics and performance characteristics in micronozzle flows with changes in various geometric parameters using Navier–Stokes simulation based on slip wall boundary conditions. The various geometric parameters considered for the study are (1) area ratio with fixed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2022-03, Vol.144 (3)
Hauptverfasser: Singh, Shailesh Kumar, R, Arun Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the fluid dynamics and performance characteristics in micronozzle flows with changes in various geometric parameters using Navier–Stokes simulation based on slip wall boundary conditions. The various geometric parameters considered for the study are (1) area ratio with fixed throat dimension and (2) the semidivergence angle variation with no change in area ratio. The simulation results show that the flow choking for micronozzle happens not at the geometric throat; rather pushed downstream to the divergent channel of the nozzle. This is due to the thick boundary layer growth, which reduces the effective flow area and shifts the minimum allowable flow area downstream to the throat. The distance to which the choking point shifts downstream to the throat reduces with Maxwell's slip wall conditions compared to the conventional no-slip wall condition. The downstream movement of the choking point from the throat reduces with an increase in area ratio and with increase in divergence angle with fixed area ratio. This is due to the fact that the increase in area ratio and divergence angle increases the nozzle height at any particular section in the divergent portion of the nozzle. As a result of this, the boundary layer profile also moves upward and the restriction of potential core by the thick boundary layer reduces, which in turn leads to an increase in the effective minimum flow area downstream to the throat.
ISSN:0098-2202
1528-901X
DOI:10.1115/1.4052546