Development and Integration of the Dual Fuel Combustion System for the MGT Gas Turbine Family

Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like “diesel fuel no. 2” can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN gas turbines (MGT) operate with the ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2022-02, Vol.144 (2)
Hauptverfasser: Ćosić, Bernhard, Reiß, Frank, Blümer, Marc, Frekers, Christian, Genin, Franklin, Pähr, Judith, Wassmer, Dominik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like “diesel fuel no. 2” can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN gas turbines (MGT) operate with the advanced can combustion (ACC) system, which is capable of ultralow NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In this paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and startup of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4052504