Stability and Unbalance Analysis of Rigid Rotors Supported by Spiral Groove Bearings: Comparison of Different Approaches

The dynamic behavior of spiral-grooved gas bearing supported four degrees-of-freedom (DOF) rotors is investigated by means of linearized bearing force coefficients and full time-integrated transient analysis. The transient method consists of a state-space representation, which couples the equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2021-12, Vol.143 (12)
Hauptverfasser: Iseli, Elia, Schiffmann, Jürg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic behavior of spiral-grooved gas bearing supported four degrees-of-freedom (DOF) rotors is investigated by means of linearized bearing force coefficients and full time-integrated transient analysis. The transient method consists of a state-space representation, which couples the equations of motion with the compressible thin-film fluid equation. The linearized method is based on the perturbation analysis around a given eccentric shaft position ε, allowing to compute the static and linear dynamic bearing force coefficients at different excitation frequencies. The two methods are compared for a variation of test rotors and bearing geometries in a given compressibility number interval of Λ=[0,40]. The limitations and weaknesses of the linearized model are presented. It is shown that shafts with two symmetric herringbone-grooved journal bearings (HGJBs) have their maximum stability and load capacity if the center of gravity lays in the middle of the two bearings. For symmetric rotors (la/lb=1), the two rigid modes, cylindrical and conical, are present and are influenced by the mass and transverse moment of inertia independently. For asymmetric rotors (la/lb
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4052025