A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing

Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASCE-ASME journal of risk and uncertainty in engineering systems, Part B. Mechanical engineering Part B. Mechanical engineering, 2022-03, Vol.8 (1)
Hauptverfasser: Huang, Xufeng, Xie, Tingli, Wang, Zhuo, Chen, Lei, Zhou, Qi, Hu, Zhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural network method (MF-PointNN) for surrogate modeling of melt pool based on FE simulation data. It merges the feature representations of the low-fidelity (LF) analytical model and high-fidelity (HF) FE simulation data through the theory of transfer learning (TL). A basic PointNN is first trained using LF data to construct a correlation between the inputs and thermal field of analytical models. Then, the basic PointNN is updated and fine-tuned using the small size of HF data to build the MF-PointNN. The trained MF-PointNN allows for efficient mapping from input variables and spatial positions to thermal histories, and thereby efficiently predicts the three-dimensional melt pool. Results of melt pool modeling of electron beam additive manufacturing (EBAM) of Ti-6Al-4V under uncertainty demonstrate the efficacy of the proposed approach.
ISSN:2332-9017
2332-9025
DOI:10.1115/1.4051749