Plume Stability During Direct Contact Condensation of Steam in a Crossflow of Subcooled Water, at High Mass Flux and With a Small Nozzle Diameter

The stability of a steam plume during direct-contact condensation into a crossflow of subcooled water is investigated for mass fluxes that are higher (>600 kg/m2s) and a nozzle diameter (2.4 mm) that is smaller than typically seen in the literature. The transition from a stable steam plume to an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2021-09, Vol.143 (9)
Hauptverfasser: Alden, Zach R, Maples, Gunnar D, Dressler, Kristofer M, Nellis, Gregory F, Berson, Arganthaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of a steam plume during direct-contact condensation into a crossflow of subcooled water is investigated for mass fluxes that are higher (>600 kg/m2s) and a nozzle diameter (2.4 mm) that is smaller than typically seen in the literature. The transition from a stable steam plume to an unstable plume associated with the formation and collapse of steam bubbles is characterized by high-speed imaging and high-frequency pressure measurements. Four regimes are observed: stable, condensation oscillation, transition, and unstable. A regime map and spectral signatures of the different flow regimes are provided. Results are compared with correlations from the literature, which are typically derived for lower mass fluxes, larger nozzles, and injection into stagnant pools of water.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.4051667