Formation of Local, Transient “Acid Spikes” in the Fast Neutron Radiolysis of Supercritical Water at 400 °C: A Potential Source of Corrosion in Supercritical Water-Cooled Reactors?
The use of supercritical water (SCW) in GEN IV reactors is a logical approach to the ongoing development of nuclear energy. A proper understanding of the radiation chemistry and reactivities of transients in a reactor core under SCW conditions is required to achieve optimal water chemistry control a...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear engineering and radiation science 2020-07, Vol.6 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of supercritical water (SCW) in GEN IV reactors is a logical approach to the ongoing development of nuclear energy. A proper understanding of the radiation chemistry and reactivities of transients in a reactor core under SCW conditions is required to achieve optimal water chemistry control and safety. A Monte Carlo simulation study of the radiolysis of SCW at 400 °C by incident 2 MeV monoenergetic neutrons (taken as representative of a fast neutron flux in a reactor) was carried out as a function of water density between ∼150 and 600 kg/m3. The in situ formation of H3O+ by the generated recoil protons was shown to render the “native” track regions temporarily very acidic (pH ∼ 1). This acidity, though local and transitory (“acid spikes”), raises the question whether it may promote a corrosive environment under proposed SCW-cooled reactor operating conditions that would lead to progressive degradation of reactor components. |
---|---|
ISSN: | 2332-8983 2332-8975 |
DOI: | 10.1115/1.4044409 |