Effects of Fe3O4/Water Nanofluid on the Efficiency of a Curved Pipe

Different-radius of curvature pipes are experimentally investigated using distilled water and Fe3O4–water nanofluid with two different values of the nanoparticle volume fraction as the working fluids. The mass flow rate is approximately varied from 0.2 to 0.7 kg/min (in the range of laminar flow); t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal science and engineering applications 2019-08, Vol.11 (4)
Hauptverfasser: Kelidari, Milad, Moghadam, Ali Jabari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different-radius of curvature pipes are experimentally investigated using distilled water and Fe3O4–water nanofluid with two different values of the nanoparticle volume fraction as the working fluids. The mass flow rate is approximately varied from 0.2 to 0.7 kg/min (in the range of laminar flow); the wall heat flux is nearly kept constant. The experimental results reveal that utilizing the nanofluid increases the convection heat transfer coefficient and Nusselt number in comparison to water; these outcomes are also observed when the radius of curvature is decreased and/or the mass flow rate is increased (equivalently, a rise in Dean number). The resultant pressure gradient is, however, intensified by an increase in the volume concentration of nanoparticles and/or by a rise in Dean number. For any particular working fluid, there is an optimum mass flow rate, which maximizes the system efficiency. The overall efficiency can be introduced to include hydrodynamic as well as thermal characteristics of nanofluids in various geometrical conditions. For each radius of curvature, the same overall efficiency may be achieved for two magnitudes of nanofluid volume concentration.
ISSN:1948-5085
1948-5093
DOI:10.1115/1.4044184