An Ohmic Heating Model Based on the Thermal Circuit Method: Case of Study for Parameter Determination

Currently, ohmic heating is a method with a wide potential as an alternative thermal process in the industry. However, the success of this method depends on the rate of the generated heat by the right material’s selection and its geometry. Due to its complexity, the heating systems are usually model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal science and engineering applications 2020-04, Vol.12 (2)
Hauptverfasser: Chávez-Campos, Gerardo Marx, del Carmen Téllez-Anguiano, Adriana, Salazar-Torres, Juan Alfonso, Vergara-Hernández, Héctor Javier, Vazquez-Gómez, Octavio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, ohmic heating is a method with a wide potential as an alternative thermal process in the industry. However, the success of this method depends on the rate of the generated heat by the right material’s selection and its geometry. Due to its complexity, the heating systems are usually modeled by computational fluid dynamics (CFD) or finite element method (FEM). However, in this paper, an alternative model representation was used, and this model does not consider the temperature gradients and uses thermal resistance and capacitance as steady-state and transient analog parameters. The parameters are calculated using matlab considering the geometry, as well as the electrical and thermal properties of the material to heat. The proposed circuit is solved by applying the Laplace transform. Finally, the temperature performance of the model and the experimental system are compared with noncontrolled and controlled experiments.
ISSN:1948-5085
1948-5093
DOI:10.1115/1.4043897