Tracking Fault Tolerant Control for Hybrid System: Two-Link Human Arm Application
This paper proposes a novel fault tolerant control (FTC) scheme for a class of hybrid dynamical system (HDS) subject to sensor faults. The corresponding FTC architecture is designed around a reconfiguration mechanism. It aims to compensate the effects of the sensors degradation and maintain satisfac...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2019-05, Vol.141 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel fault tolerant control (FTC) scheme for a class of hybrid dynamical system (HDS) subject to sensor faults. The corresponding FTC architecture is designed around a reconfiguration mechanism. It aims to compensate the effects of the sensors degradation and maintain satisfactory performances including continuous stability. Moreover, by using the linear matrix inequalities (LMI) approach, a fault estimation algorithm is fulfilled and the compromise between robustness to disturbances and sensitivity to fault is guaranteed. For the sake of trajectory tracking, a combined robust state feedback and proportional-integral-derivative control system is proposed herein. Finally, extensive simulation results conducted on two-link arm system are included to illustrate the efficiency of the designed FTC scheme. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4042378 |