Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
Tool-workpiece deflection is one of the major error sources in machining thin walled structures like blades. The traditional approach in industry to eliminate this error is based on modifying tool positions after measuring the error on the machined part. This paper presents an integrated model of cu...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing science and engineering 2019-03, Vol.141 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tool-workpiece deflection is one of the major error sources in machining thin walled structures like blades. The traditional approach in industry to eliminate this error is based on modifying tool positions after measuring the error on the machined part. This paper presents an integrated model of cutting force distribution on the tool–blade contact, automatic update of blade static stiffness matrix without resorting to time-consuming finite element solutions as the material is removed, the prediction and compensation of static deflection marks left on the blade surface. The main focus of the paper is to compensate the deflection errors by respecting the maximum form errors, collision of tool/machine/workpiece, cutting speed limit at the tool tip, and ball end—blade surface contact constraints. The compensation has been carried out by two modules. The first module adjusts the tool orientation along the path to reduce the error by constructing an optimization problem. This module is computationally inexpensive and results in about 70% error reduction based on the conducted experiments. The modified tool path resulted from the first module is fed to the second module for further reduction of the form errors if needed at the violated cutter locations; hence it takes less computational time than the stand alone approach proposed in the literature. The proposed algorithms have been experimentally validated on five-axis finish ball end milling of blades with about 80% reduction in cutting force induced form errors. |
---|---|
ISSN: | 1087-1357 1528-8935 |
DOI: | 10.1115/1.4042019 |