Vision-Based Modal Analysis Using Multiple Vibration Distribution Synthesis to Inspect Large-Scale Structures

Previously, we proposed a multithread active vision system with virtual multiple pan-tilt tracking cameras by rapidly switching the viewpoints for the vibration sensing of large-scale structures. We also developed a system using a galvanometer mirror that can switch 500 different viewpoints in 1 s....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2019-03, Vol.141 (3)
Hauptverfasser: Aoyama, Tadayoshi, Li, Liang, Jiang, Mingjun, Takaki, Takeshi, Ishii, Idaku, Yang, Hua, Umemoto, Chikako, Matsuda, Hiroshi, Chikaraishi, Makoto, Fujiwara, Akimasa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we proposed a multithread active vision system with virtual multiple pan-tilt tracking cameras by rapidly switching the viewpoints for the vibration sensing of large-scale structures. We also developed a system using a galvanometer mirror that can switch 500 different viewpoints in 1 s. However, the measurement rate of each observation point is low, and the time density is not always sufficient. In addition, strong multiple illuminations are required for the system owing to the retro reflective markers attached to the object being observed. In this study, we propose a multiple vibration distribution synthesis method for vibration analysis that increases the sampling rate of each observation point in the multi-thread active vision system, which is subsequently modified to a system that requires only one illumination by using corner cubes as markers. Several dynamics-based inspection experiments are conducted for a 4 m long truss-structure bridge model. The proposed method and system are verified via a high-order modal analysis, which was impossible to perform in the previous method and system.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.4041604