Modeling Gel Fiber Formation in an Emerging Coaxial Flow From a Nozzle

It is important to understand the operational aspects which affect the continuous fabrication of alginate gel fibers. These can be formed from a cross-linking reaction of an alginate precursor injected into a coaxial annular pipe flow with a calcium chloride solution. This is an example of an emergi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2019-01, Vol.141 (1)
Hauptverfasser: Williams, Harvey, McPhail, Michael, Mondal, Sourav, Münch, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important to understand the operational aspects which affect the continuous fabrication of alginate gel fibers. These can be formed from a cross-linking reaction of an alginate precursor injected into a coaxial annular pipe flow with a calcium chloride solution. This is an example of an emerging solid interface that interacts with the flow in its neighborhood. We advance on earlier works by relaxing assumptions of a fixed spatial domain to explore and observe mechanisms controlling gel radius. We use two different models. The first one represents the gel layer as a capillary interface between two immiscible liquids and captures the effect of surface tension. A second model is introduced to treat the cross-linking chemical reaction and its effect on the viscosity as the alginate gel forms. Through numerical simulations and analytical approximations of the downstream behavior, we determine the shape of the fiber in the pipe flow and its impact on the flow velocity as well as on the total production of gel.
ISSN:0098-2202
1528-901X
DOI:10.1115/1.4040833