Active Vibration Control of a Doubly Curved Composite Shell Stiffened by Beams Bonded With Discrete Macro Fiber Composite Sensor/Actuator Pairs

Doubly curved stiffened shells are essential parts of many large-scale engineering structures, such as aerospace, automotive and marine structures. Optimization of active vibration reduction has not been properly investigated for this important group of structures. This study develops a placement me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2018-12, Vol.140 (12)
Hauptverfasser: Daraji, Ali H, Hale, Jack M, Ye, Jianqiao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Doubly curved stiffened shells are essential parts of many large-scale engineering structures, such as aerospace, automotive and marine structures. Optimization of active vibration reduction has not been properly investigated for this important group of structures. This study develops a placement methodology for such structures under motion base and external force excitations to optimize the locations of discrete piezoelectric sensor/actuator pairs and feedback gain using genetic algorithms for active vibration control. In this study, fitness and objective functions are proposed based on the maximization of sensor output voltage to optimize the locations of discrete sensors collected with actuators to attenuate several vibrations modes. The optimal control feedback gain is determined then based on the minimization of the linear quadratic index. A doubly curved composite shell stiffened by beams and bonded with discrete piezoelectric sensor/actuator pairs is modeled in this paper by first-order shear deformation theory using finite element method and Hamilton's principle. The proposed methodology is implemented first to investigate a cantilever composite shell to optimize four sensor/actuator pairs to attenuate the first six modes of vibration. The placement methodology is applied next to study a complex stiffened composite shell to optimize four sensor/actuator pairs to test the methodology effectiveness. The results of optimal sensor/actuator distribution are validated by convergence study in genetic algorithm program, ANSYS package and vibration reduction using optimal linear quadratic control scheme.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.4040669