Characterization of Interfacial Properties of Graphene-Reinforced Polymer Nanocomposites by Molecular Dynamics-Shear Deformation Model
In this paper, we present an approach for characterizing the interfacial region using the molecular dynamics (MD) simulations and the shear deformation model (SDM). The bulk-level mechanical properties of graphene-reinforced nanocomposites strongly depend on the interfacial region between the graphe...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2018-09, Vol.85 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present an approach for characterizing the interfacial region using the molecular dynamics (MD) simulations and the shear deformation model (SDM). The bulk-level mechanical properties of graphene-reinforced nanocomposites strongly depend on the interfacial region between the graphene and epoxy matrix, whose thickness is about 6.8–10.0 Å. Because it is a challenge to experimentally investigate mechanical properties of this thin region, computational MD simulations have been widely employed. By pulling out graphene from the graphene/epoxy system, pull-out force and atomic displacement of the interfacial region are calculated to characterize the interfacial shear modulus. The same processes are applied to 3% grafted hydroxyl and carboxyl functionalized graphene (OH-FG and COOH-FG)/epoxy (diglycidyl ether of bisphenol F (DGEBF)/triethylenetetramine (TETA)) systems, and influences of the functionalization on the mechanical properties of the interfacial region are studied. Our key finding is that, by functionalizing graphene, the pull-out force moderately increases and the interfacial shear modulus considerably decreases. We demonstrate our results by comparing them with literature values and findings from experimental papers. |
---|---|
ISSN: | 0021-8936 1528-9036 |
DOI: | 10.1115/1.4040480 |