Reproducibility of Experiments With Swirling Flow: Numerical Prediction With Polynomial Chaos
Achieving good reproducibility in fluid flow experiments can be challenging, in particular in scenarios where the experimental boundary conditions are obscure. We use computational uncertainty quantification (UQ) to evaluate the influence of uncertain inflow conditions on the reproducibility of expe...
Gespeichert in:
Veröffentlicht in: | Journal of verification, validation, and uncertainty quantification validation, and uncertainty quantification, 2018-03, Vol.3 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Achieving good reproducibility in fluid flow experiments can be challenging, in particular in scenarios where the experimental boundary conditions are obscure. We use computational uncertainty quantification (UQ) to evaluate the influence of uncertain inflow conditions on the reproducibility of experiments with swirling flow. Using a nonintrusive polynomial chaos method in combination with a computational fluid dynamics (CFD) code, we obtain the expectation and variance of the velocity fields downstream from symmetric and asymmetric swirl disturbance generators. Our results suggest that the flow patterns downstream from the asymmetric swirl disturbance generator are more reproducible than the flow patterns downstream from the symmetric swirl disturbance generator. This confirms that the inherent breaking of symmetry eliminates instability mechanisms in the wake of the disturber, thereby creating more stable swirling patterns that make the experiments more reproducible. |
---|---|
ISSN: | 2377-2158 2377-2166 |
DOI: | 10.1115/1.4040431 |