Seizure Improved Lead-Free Electroplated Bearing Overlay System for Heavy-Duty Truck and Off-Highway Applications

The move to lead-free bearing materials is well known, and upcoming legislation, such as the restriction of hazardous substances, is increasing the drive to extend this trend toward heavy-duty diesel truck and off-highway applications. During the development of lead-free systems, new electroplated o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2018-11, Vol.140 (11)
Hauptverfasser: Jupe, Kevin, Gorges, Roger, Rathod, Anil, Carey, John, Stearns, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The move to lead-free bearing materials is well known, and upcoming legislation, such as the restriction of hazardous substances, is increasing the drive to extend this trend toward heavy-duty diesel truck and off-highway applications. During the development of lead-free systems, new electroplated overlays and bronze-based substrates have been developed by various suppliers, but little attention has been given to the interlayer or diffusion barrier between the overlay and substrate materials. This interlayer is particularly necessary for tin-based solutions as it prevents the rapid diffusion of overlay species into the bronze substrate. The present development focuses on improving this often overlooked element in the system and provides a further robustness that could even be adapted to lead-based systems where increased performance is required. The incorporation of hexagonal boron nitride (hBN) as a solid lubricant in the nickel interlayer changes dramatically the interlayer properties and provides more typical bearing-like behavior for seizure resistance and scuff performance compared to nickel alone. The paper details the findings of respective rig tests as well as an actual engine test supporting the change in material characteristics and the associated improvement in seizure resistance.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4040292