Design and Validation of a Recirculating, High-Reynolds Number Water Tunnel
Commercial water tunnels typically generate a momentum thickness based Reynolds number (Reθ) ∼1000, which is slightly above the laminar to turbulent transition. The current work compiles the literature on the design of high-Reynolds number facilities and uses it to design a high-Reynolds number reci...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2018-08, Vol.140 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Commercial water tunnels typically generate a momentum thickness based Reynolds number (Reθ) ∼1000, which is slightly above the laminar to turbulent transition. The current work compiles the literature on the design of high-Reynolds number facilities and uses it to design a high-Reynolds number recirculating water tunnel that spans the range between commercial water tunnels and the largest in the world. The final design has a 1.1 m long test-section with a 152 mm square cross section that can reach speed of 10 m/s, which corresponds to Reθ=15,000. Flow conditioning via a tandem configuration of honeycombs and settling-chambers combined with an 8.5:1 area contraction resulted in an average test-section inlet turbulence level |
---|---|
ISSN: | 0098-2202 1528-901X |
DOI: | 10.1115/1.4039509 |