Reliability-Based Topology Optimization Using Mean-Value Second-Order Saddlepoint Approximation

A reliability-based topology optimization (RBTO) approach is presented using a new mean-value second-order saddlepoint approximation (MVSOSA) method to calculate the probability of failure. The topology optimizer uses a discrete adjoint formulation. MVSOSA is based on a second-order Taylor expansion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2018-03, Vol.140 (3)
Hauptverfasser: Papadimitriou, Dimitrios I, Mourelatos, Zissimos P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A reliability-based topology optimization (RBTO) approach is presented using a new mean-value second-order saddlepoint approximation (MVSOSA) method to calculate the probability of failure. The topology optimizer uses a discrete adjoint formulation. MVSOSA is based on a second-order Taylor expansion of the limit state function at the mean values of the random variables. The first- and second-order sensitivity derivatives of the limit state cumulant generating function (CGF), with respect to the random variables in MVSOSA, are computed using direct-differentiation of the structural equations. Third-order sensitivity derivatives, including the sensitivities of the saddlepoint, are calculated using the adjoint approach. The accuracy of the proposed MVSOSA reliability method is demonstrated using a nonlinear mathematical example. Comparison with Monte Carlo simulation (MCS) shows that MVSOSA is more accurate than mean-value first-order saddlepoint approximation (MVFOSA) and more accurate than mean-value second-order second-moment (MVSOSM) method. Finally, the proposed RBTO-MVSOSA method for minimizing a compliance-based probability of failure is demonstrated using two two-dimensional beam structures under random loading. The density-based topology optimization based on the solid isotropic material with penalization (SIMP) method is utilized.
ISSN:1050-0472
1528-9001
DOI:10.1115/1.4038645