Numerical Investigation of Entropy Generation in Stratified Thermal Stores

This paper investigates the nature of entropy generation in stratified sensible thermal energy stores (SSTES) during charging using a dimensionless axisymmetric numerical model of an SSTES. Time-varying dimensionless entropy generation rates and the cumulative entropy generation in SSTES were determ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy resources technology 2018-01, Vol.140 (1)
Hauptverfasser: Njoku, Howard O, Ekechukwu, Onyemaechi V, Onyegegbu, Samuel O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the nature of entropy generation in stratified sensible thermal energy stores (SSTES) during charging using a dimensionless axisymmetric numerical model of an SSTES. Time-varying dimensionless entropy generation rates and the cumulative entropy generation in SSTES were determined from finite volume computations. The aspect ratios (AR), Peclet numbers (PeD), and Richardson numbers (Ri), for the stores considered were within the ranges 1≤AR≤4, 5×103≤PeD≤100×103, and 10≤Ri≤104, respectively. Using the Bejan number (Be), the total entropy generation was shown to be almost entirely due to thermal effects in the SSTES. The Be is practically unity for most of the SSTES' charging duration. The contributions of radial thermal gradients to the thermal entropy generation were further shown to be largely negligible in comparison to the contributions of axial thermal gradients, except at low Ri. Entropy generation numbers, Ns, in the SSTES were also computed and found to increase with decreasing AR and PeD and with increasing Ri. PeD was found to have the most significant influence on Ns. Based on this axisymmetric analyses of time-varying entropy generation in SSTES, estimates have been obtained of (1) the relative significance of radial effects on entropy generation within SSTES and (2) the relative significance of viscous shear entropy generation mechanisms within SSTES.
ISSN:0195-0738
1528-8994
DOI:10.1115/1.4037535