SFTA-Based Approach for Safety/Reliability Analysis of Operational Use-Cases in Cyber-Physical Systems
The software is often responsible for controlling the behavior of mechanical and electrical components, as well as interactions among these components in cyber-physical systems (CPS). The risks in CPS systems could result in losing tools, features, performance and even life. Therefore, safety analys...
Gespeichert in:
Veröffentlicht in: | Journal of computing and information science in engineering 2017-09, Vol.17 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The software is often responsible for controlling the behavior of mechanical and electrical components, as well as interactions among these components in cyber-physical systems (CPS). The risks in CPS systems could result in losing tools, features, performance and even life. Therefore, safety analysis for software in these systems is a highly critical and serious issue. In general, safety and reliability approaches play a major role in a risk management process in CPS. In this paper, after reviewing the major techniques of software reliability and safety in CPS, an software fault tree analysis (SFTA)-based approach is presented for analysis of operational use-cases (UC) in a CPS system. In our approach, the events related to use-cases are extracted, and the related SFTA is then obtained using the proposed algorithm. Moreover, a semi-automatic method is presented in this paper to produce software failure mode and effects analysis (SFMEA) from SFTA. The results of our approach are applicable for software safety analysis in a real CPS system, including the control system of Iranian National Observatory telescope. Assessment of the suggested method is performed through numerous safety/reliability criteria and the qualitative/quantitative analysis based on these criteria. |
---|---|
ISSN: | 1530-9827 1944-7078 |
DOI: | 10.1115/1.4037228 |