Analysis of Multidimensional Time Delay Systems Using Lambert W Function
In this note, the analysis of time delay systems (TDSs) using Lambert W function approach is reassessed. A common canonical (CC) form of time delay systems is defined. We extended the recent results of Cepeda–Gomez and Michiels (2015, “Some Special Cases in the Stability Analysis of Multi-Dimensiona...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2017-11, Vol.139 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, the analysis of time delay systems (TDSs) using Lambert W function approach is reassessed. A common canonical (CC) form of time delay systems is defined. We extended the recent results of Cepeda–Gomez and Michiels (2015, “Some Special Cases in the Stability Analysis of Multi-Dimensional Time-Delay Systems Using the Matrix Lambert W Function,” Automatica, 53, pp. 339–345) for second-order into nth order system. The eigenvalues of a time delay system are either real or complex conjugate pairs and therefore, the whole eigenspectrum can be associated with only two real branches of the Lambert W function. A new class of time delay systems is characterized to extend the applicability of the above-said method. Moreover, this approach has been exploited to design a controller which places a subset of eigenvalues at desired locations. Stability is guaranteed by using a new algorithm developed in this paper, which is based on the Nyquist plot. The approach is validated through numerical examples. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4036874 |