Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons
In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neu...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2017-08, Vol.139 (8) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of dynamic systems, measurement, and control |
container_volume | 139 |
creator | Javidmanesh, Elham |
description | In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neural network model is considered, and the associated characteristic equation is studied by classification according to n. Here, n can be chosen arbitrarily. Moreover, we find an appropriate Lyapunov function that under a hypothesis, results in global stability. Numerical examples are also presented. |
doi_str_mv | 10.1115/1.4036229 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4036229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>384816</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-2a34196fd00559502bf89c8aac6e1f316f353315bb16a05ec66a7f7199c95fb83</originalsourceid><addsrcrecordid>eNotkDFPwzAQhS0EEqUwMLN4ZUjx2bEbj6WUglTKAIgxsl1buCQxshNQN346Ce100rvvnu49hC6BTACA38AkJ0xQKo_QCDgtMklocYxGhFCakZzlp-gspS0hwBgXI_S7rIJWFX5plfaVb3dYNRt8610XjWp9aLBv8J2t1M4O8sZHawa5P5mlFIzvoW-Ln2wd4g6vbRf7zdq2PyF-Jvzu24_eEM-i9m1UA9HV2kYc3D8bmnSOTpyqkr04zDF6u1-8zh-y1fPycT5bZYrmss2oYjlI4TaEcC45odoV0hRKGWHBMRCOccaAaw1CEW6NEGrqpiClkdzpgo3R9d7XxJBStK78ir7uXyqBlEN1JZSH6nr2as-qVNtyG7rY500lK_ICBPsDCJZrIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Javidmanesh, Elham</creator><creatorcontrib>Javidmanesh, Elham</creatorcontrib><description>In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neural network model is considered, and the associated characteristic equation is studied by classification according to n. Here, n can be chosen arbitrarily. Moreover, we find an appropriate Lyapunov function that under a hypothesis, results in global stability. Numerical examples are also presented.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.4036229</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of dynamic systems, measurement, and control, 2017-08, Vol.139 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-2a34196fd00559502bf89c8aac6e1f316f353315bb16a05ec66a7f7199c95fb83</citedby><cites>FETCH-LOGICAL-a249t-2a34196fd00559502bf89c8aac6e1f316f353315bb16a05ec66a7f7199c95fb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Javidmanesh, Elham</creatorcontrib><title>Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neural network model is considered, and the associated characteristic equation is studied by classification according to n. Here, n can be chosen arbitrarily. Moreover, we find an appropriate Lyapunov function that under a hypothesis, results in global stability. Numerical examples are also presented.</description><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAQhS0EEqUwMLN4ZUjx2bEbj6WUglTKAIgxsl1buCQxshNQN346Ce100rvvnu49hC6BTACA38AkJ0xQKo_QCDgtMklocYxGhFCakZzlp-gspS0hwBgXI_S7rIJWFX5plfaVb3dYNRt8610XjWp9aLBv8J2t1M4O8sZHawa5P5mlFIzvoW-Ln2wd4g6vbRf7zdq2PyF-Jvzu24_eEM-i9m1UA9HV2kYc3D8bmnSOTpyqkr04zDF6u1-8zh-y1fPycT5bZYrmss2oYjlI4TaEcC45odoV0hRKGWHBMRCOccaAaw1CEW6NEGrqpiClkdzpgo3R9d7XxJBStK78ir7uXyqBlEN1JZSH6nr2as-qVNtyG7rY500lK_ICBPsDCJZrIw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Javidmanesh, Elham</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons</title><author>Javidmanesh, Elham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-2a34196fd00559502bf89c8aac6e1f316f353315bb16a05ec66a7f7199c95fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javidmanesh, Elham</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javidmanesh, Elham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>139</volume><issue>8</issue><issn>0022-0434</issn><eissn>1528-9028</eissn><abstract>In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neural network model is considered, and the associated characteristic equation is studied by classification according to n. Here, n can be chosen arbitrarily. Moreover, we find an appropriate Lyapunov function that under a hypothesis, results in global stability. Numerical examples are also presented.</abstract><pub>ASME</pub><doi>10.1115/1.4036229</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0434 |
ispartof | Journal of dynamic systems, measurement, and control, 2017-08, Vol.139 (8) |
issn | 0022-0434 1528-9028 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4036229 |
source | Alma/SFX Local Collection; ASME Transactions Journals (Current) |
title | Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Stability%20and%20Bifurcation%20in%20Delayed%20Bidirectional%20Associative%20Memory%20Neural%20Networks%20With%20an%20Arbitrary%20Number%20of%20Neurons&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Javidmanesh,%20Elham&rft.date=2017-08-01&rft.volume=139&rft.issue=8&rft.issn=0022-0434&rft.eissn=1528-9028&rft_id=info:doi/10.1115/1.4036229&rft_dat=%3Casme_cross%3E384816%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |