Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons

In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2017-08, Vol.139 (8)
1. Verfasser: Javidmanesh, Elham
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neural network model is considered, and the associated characteristic equation is studied by classification according to n. Here, n can be chosen arbitrarily. Moreover, we find an appropriate Lyapunov function that under a hypothesis, results in global stability. Numerical examples are also presented.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.4036229