Analyzing the Effects of Temperature, Nozzle-Bed Distance, and Their Interactions on the Width of Fused Deposition Modeled Struts Using Statistical Techniques Toward Precision Scaffold Fabrication

Fused deposition modeling (FDM) is currently one of the most widely utilized prototyping technologies. Studies employing statistical techniques have been conducted to develop empirical relationships between FDM process factors and output variables such as dimensional accuracy, surface roughness, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of manufacturing science and engineering 2017-07, Vol.139 (7)
Hauptverfasser: Ravi, Prashanth, Shiakolas, Panos S, Dnyaneshwar Thorat, Avinash
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fused deposition modeling (FDM) is currently one of the most widely utilized prototyping technologies. Studies employing statistical techniques have been conducted to develop empirical relationships between FDM process factors and output variables such as dimensional accuracy, surface roughness, and mechanical properties of the fabricated structures. However, the effects of nozzle temperature (T), nozzle-bed distance (NBD), and their interactions on strut width (SW) have not been investigated. In the present work, a two-way factorial study with three levels of T and NBD in triplicates was undertaken. A fixed-effects model with interaction was proposed and remedial measures based on the error analysis were performed to obtain correct inferences. The factor main/interaction effects were all found to be statistically significant (p 
ISSN:1087-1357
1528-8935
DOI:10.1115/1.4035963