Power Augmentation of Shrouded Wind Turbines in a Multirotor System
Diffuser-augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Multirotor systems (MRSs) have a lot of merits such as significant saving mass and overall cost of the wind turbine system. A MRS is defined as containing more than one rotor in a single structure. In t...
Gespeichert in:
Veröffentlicht in: | Journal of energy resources technology 2017-09, Vol.139 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diffuser-augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Multirotor systems (MRSs) have a lot of merits such as significant saving mass and overall cost of the wind turbine system. A MRS is defined as containing more than one rotor in a single structure. In the present research, DAWTs are studied in a MRS. In wind tunnel experiments, the power output and aerodynamics of two and three DAWTs placed in close vicinity, in side-by-side arrangements, have been investigated, along with circular disks and conventional wind turbines in the same configurations as the MRS. Results show a significant increase of up to 12% in total power output of the MRS with DAWTs compared to the sum of the stand-alone same turbines. The results can be explained by observing the bluff body flow phenomena in the wake interference around the multiple circular disks. Those flow phenomena are due to the accelerated gap flows and those biasing in the flow direction caused by the vortex interactions in the gap. |
---|---|
ISSN: | 0195-0738 1528-8994 |
DOI: | 10.1115/1.4035754 |