Biased Information Passing Between Subsystems Over Time in Complex System Design

During the early stage design of large-scale engineering systems, design teams are challenged to balance a complex set of considerations. The established structured approaches for optimizing complex system designs offer strategies for achieving optimal solutions, but in practice suboptimal system-le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2016-01, Vol.138 (1)
Hauptverfasser: Austin-Breneman, Jesse, Yu, Bo Yang, Yang, Maria C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the early stage design of large-scale engineering systems, design teams are challenged to balance a complex set of considerations. The established structured approaches for optimizing complex system designs offer strategies for achieving optimal solutions, but in practice suboptimal system-level results are often reached due to factors such as satisficing, ill-defined problems, or other project constraints. Twelve subsystem and system-level practitioners at a large aerospace organization were interviewed to understand the ways in which they integrate subsystems in their own work. Responses showed subsystem team members often presented conservative, worst-case scenarios to other subsystems when negotiating a tradeoff as a way of hedging against their own future needs. This practice of biased information passing, referred to informally by the practitioners as adding “margins,” is modeled in this paper with a series of optimization simulations. Three “bias” conditions were tested: no bias, a constant bias, and a bias which decreases with time. Results from the simulations show that biased information passing negatively affects both the number of iterations needed and the Pareto optimality of system-level solutions. Results are also compared to the interview responses and highlight several themes with respect to complex system design practice.
ISSN:1050-0472
1528-9001
DOI:10.1115/1.4031745