Radiolysis of Supercritical Water at 400°C: A Sensitivity Study of the Density Dependence of the Yield of Hydrated Electrons on the (eaq−+eaq−) Reaction Rate Constant
The temperature dependence of the rate constant (k) of the bimolecular reaction of two hydrated electrons (eaq−) measured in alkaline water exhibits an abrupt drop between 150°C and 200°C; above 250°C, it is too small to be measured reliably. Although this result is well established, the applicabili...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear engineering and radiation science 2016-04, Vol.2 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The temperature dependence of the rate constant (k) of the bimolecular reaction of two hydrated electrons (eaq−) measured in alkaline water exhibits an abrupt drop between 150°C and 200°C; above 250°C, it is too small to be measured reliably. Although this result is well established, the applicability of this sudden drop in k(eaq−+eaq−)) above ∼150°C to neutral or slightly acidic solution, as recommended by some authors, still remains uncertain. In fact, the recent work suggested that in near-neutral water the abrupt change in k above ∼150°C does not occur and that k should increase, rather than decrease, at temperatures greater than 150°C with roughly the same Arrhenius dependence of the data below 150°C. In view of this uncertainty of k, Monte Carlo simulations were used in this study to examine the sensitivity of the density dependence of the yield of eaq− in the low–linear energy transfer (LET) radiolysis of supercritical water (H2O) at 400°C on variations in the temperature dependence of k. Two different values of the eaq− self-reaction rate constant at 400°C were used: one was based on the temperature dependence of k above 150°C as measured in alkaline water (4.2×108 M−1 s−1), and the other was based on an Arrhenius extrapolation of the values below 150°C (2.5×1011 M−1 s−1). In both cases, the density dependences of our calculated eaq− yields at ∼60 ps and 1 ns were found to compare fairly well with the available picosecond pulse radiolysis experimental data (for D2O) for the entire water density range studied (∼0.15–0.6 g/cm3). Only a small effect of k on the variation of G(eaq−)) as a function of density at 60 ps and 1 ns could be observed. In conclusion, our present calculations did not allow us to unambiguously confirm (or deny) the applicability of the predicted sudden drop of k(eaq−+eaq−) at ∼150°C in near-neutral water. |
---|---|
ISSN: | 2332-8983 2332-8975 |
DOI: | 10.1115/1.4031013 |