Effect of Centrifugal Force on Turbulent Premixed Flames
The effect of centrifugal force on flame propagation velocity of stoichiometric propane–, kerosene–, and n-octane–air turbulent premixed flames was numerically examined. The quasi-turbulent numerical model was set in an unsteady two-dimensional (2D) geometry with finite length in the transverse and...
Gespeichert in:
Veröffentlicht in: | Journal of engineering for gas turbines and power 2015-01, Vol.137 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of centrifugal force on flame propagation velocity of stoichiometric propane–, kerosene–, and n-octane–air turbulent premixed flames was numerically examined. The quasi-turbulent numerical model was set in an unsteady two-dimensional (2D) geometry with finite length in the transverse and streamwise directions but with infinite length in the spanwise direction. There was relatively good comparison between literature-reported measurements and predictions of propane–air flame propagation velocity as a function of centrifugal force. It was found that for all mixtures the flame propagation velocity increases with centrifugal force. It reaches a maximum, then falls off rapidly with further increases in centrifugal force. The results of this numerical study suggest that there are no distinct differences among the three mixtures in terms of the trends seen of the effect of centrifugal force on the flame propagation velocity. There are, however, quantitative differences. The numerical model is set in a noninertial, rotating reference frame. This rotation imposes a radially outward (centrifugal) force. The ignited mixture at one end of the tube raises the temperature and its heat release tends to laminarize the flow. The attained density difference combined with the direction of the centrifugal force promotes Rayleigh–Taylor instability. This instability with thermal expansion and turbulent flame speed constitute the flame propagation mechanism towards the other tube end. A wave is also generated from the ignition zone but propagates faster than the flame. During propagation the flame interacts with eddies that wrinkle and/or corrugate the flame. The flame front wrinkles interact with streamtubes that enhance Landau–Darrieus (hydrodynamic) instability, giving rise to a corrugated flame. Under strong stretch conditions the stabilizing equidiffusive-curvature mechanism fails and the flame front breaks up, allowing inflow of unburned mixture into the flame. This phenomenon slows down the flame temporarily and then the flame speeds up faster than before. However, if corrugation is large and the inflow of unburned mixture into the flame is excessive, the latter locally quenches and slows down the flame. This occurs when the centrifugal force is large, tending to blowout the flame. The wave in the tube interacts continuously with the flame through baroclinic torques at the flame front that further enhances the above mentioned flame–eddy interactions. Only at lo |
---|---|
ISSN: | 0742-4795 1528-8919 |
DOI: | 10.1115/1.4028057 |