Invariant Forms of Conservation Equations and Some Examples of Their Exact Solutions
A scale-invariant model of statistical mechanics is described leading to invariant Boltzmann equation and the corresponding invariant Enskog equation of change. A modified form of Cauchy stress tensor for fluid is presented such that in the limit of vanishing intermolecular spacing, all tangential f...
Gespeichert in:
Veröffentlicht in: | Journal of energy resources technology 2014-09, Vol.136 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A scale-invariant model of statistical mechanics is described leading to invariant Boltzmann equation and the corresponding invariant Enskog equation of change. A modified form of Cauchy stress tensor for fluid is presented such that in the limit of vanishing intermolecular spacing, all tangential forces vanish in accordance with perceptions of Cauchy and Poisson. The invariant forms of mass, thermal energy, linear momentum, and angular momentum conservation equations derived from invariant Enskog equation of change are described. Also, some exact solutions of the conservation equations for the problems of normal shock, laminar, and turbulent flow over a flat plate, and flow within a single or multiple concentric spherical liquid droplets made of immiscible fluids located at the stagnation point of opposed cylindrically symmetric gaseous finite jets are presented. |
---|---|
ISSN: | 0195-0738 1528-8994 |
DOI: | 10.1115/1.4027765 |