Estimation of Low-Cycle Fatigue Life of Elbow Pipes Considering the Multi-Axial Stress Effect
The stress states of elbow pipes are complex and different from those of straight pipes. Manson's universal slope method cannot predict the low-cycle fatigue lives of elbow pipes under combined cyclic bending and internal pressure. In this work, fatigue tests and finite element analysis showed...
Gespeichert in:
Veröffentlicht in: | Journal of pressure vessel technology 2014-08, Vol.136 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stress states of elbow pipes are complex and different from those of straight pipes. Manson's universal slope method cannot predict the low-cycle fatigue lives of elbow pipes under combined cyclic bending and internal pressure. In this work, fatigue tests and finite element analysis showed that the multi-axial stress factor (i.e., ratio of axial stress to hoop stress) is quite high at elbows. This paper proposes a revised Manson's universal slope method that considers the multi-axial stress factor to predict the low-cycle fatigue lives of elbows under combined cyclic bending and internal pressure with considerably high accuracy. |
---|---|
ISSN: | 0094-9930 1528-8978 |
DOI: | 10.1115/1.4026903 |