Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
Ultrasonic welding is a solid-state bond created using ultrasonic energy. It has been used in the semiconductor industry for several decades, and more recently, in the automotive industry such as for lithium-ion battery welding. Although there existed numerical simulations for ultrasonic welding, th...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing science and engineering 2013-12, Vol.135 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrasonic welding is a solid-state bond created using ultrasonic energy. It has been used in the semiconductor industry for several decades, and more recently, in the automotive industry such as for lithium-ion battery welding. Although there existed numerical simulations for ultrasonic welding, the models were limited to two-layer and like materials stackups. In this study, finite element theories are introduced and simulation procedure is established for multiple sheets and dissimilar metal ultrasonic welding. The procedures require both abaqus/Standard and abaqus/Explicit to simulate the coupled mechanical-thermal phenomena over the entire weld duration with moderate computational cost. The procedure is verified and used to simulate selected specific cases involving multiple sheets and dissimilar materials, i.e., copper and aluminum. The simulation procedure demonstrates its capability to predict welding energy, distortion, and temperature distribution of the workpieces. Case studies of ultrasonic welding simulations for multiple layers of lithium-ion battery tabs are presented. The prediction leads to several innovative ultrasonic welding process designs for improved welding quality. |
---|---|
ISSN: | 1087-1357 1528-8935 |
DOI: | 10.1115/1.4025668 |