Equivalence of History-Function Based and Infinite-Dimensional-State Initializations for Fractional-Order Operators
Proper initialization of fractional-order operators has been an ongoing problem, particularly in the application of Laplace transforms with correct initialization terms. In the last few years, a history-function-based initialization along with its corresponding Laplace transform has been presented....
Gespeichert in:
Veröffentlicht in: | Journal of computational and nonlinear dynamics 2013-10, Vol.8 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proper initialization of fractional-order operators has been an ongoing problem, particularly in the application of Laplace transforms with correct initialization terms. In the last few years, a history-function-based initialization along with its corresponding Laplace transform has been presented. Alternatively, an infinite-dimensional state-space representation along with its corresponding Laplace transform has also been presented. The purpose of this paper is to demonstrate that these two approaches to the initialization problem for fractional-order operators are equivalent and that the associated Laplace transforms yield the correct initialization terms and can be used in the solution of fractional-order differential equations. |
---|---|
ISSN: | 1555-1415 1555-1423 |
DOI: | 10.1115/1.4023865 |