Performance Analysis of the Low Temperature Solar-Boosted Power Generation System—Part II: Thermodynamic Characteristics of the Kalina Solar System
In part I of the current work, by quantitative analysis, Kalina solar system using traditional nonconcentrating evacuated tube solar collector (ETSC) with certain solar heat transfer rate is proposed as an optimal choice for its superior thermodynamic performance to generate electricity from low tem...
Gespeichert in:
Veröffentlicht in: | Journal of solar energy engineering 2013-02, Vol.135 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In part I of the current work, by quantitative analysis, Kalina solar system using traditional nonconcentrating evacuated tube solar collector (ETSC) with certain solar heat transfer rate is proposed as an optimal choice for its superior thermodynamic performance to generate electricity from low temperature solar energy. To better understand and utilize solar energy in Kalina cycle more efficiently, a thermodynamic qualitative analysis of the solar system is carried on in this part. Many thermodynamical parameters are investigated. Results show that the system pressure difference is one key factor for evaluating the power generation subcycle thermal efficiency, which is an important performance benchmark. Thus, through the instrumentality of simulation results, its corresponding relational expressions are developed by using fitting method. Further, a generalized estimating equation using to estimate generating capacity of the solar system is built. It is shown that when the Kalina solar system is designed and completed, its generating capacity can be estimated by using this equation. And then, a case study of Kalina solar system with 10,000 m2 ETSC is given with the aid of the weather conditions of Kumejima Island in Japan. In this case, its maximum annual power generation is estimated as 931,124 kW h, which is an ideal goal. Herefrom, the corresponding control strategies are proposed for approaching this target. Finally, thermodynamic characteristics of the low temperature Kalina solar system are clarified. |
---|---|
ISSN: | 0199-6231 1528-8986 |
DOI: | 10.1115/1.4006964 |