Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System

This paper presents an experimental study for the development of convective heat transfer correlations for an open loop air-based building-integrated photovoltaic/thermal (BIPV/T) system. The BIPV/T system absorbs solar energy on the top surface, which includes the photovoltaic panels and generates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2011-05, Vol.133 (2)
Hauptverfasser: Candanedo, Luis M, Athienitis, Andreas, Park, Kwang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an experimental study for the development of convective heat transfer correlations for an open loop air-based building-integrated photovoltaic/thermal (BIPV/T) system. The BIPV/T system absorbs solar energy on the top surface, which includes the photovoltaic panels and generates electricity while also heating air drawn by a variable speed fan through a channel formed by the top roof surface with the photovoltaic modules and an insulated attic layer. The BIPV/T system channel has a length/hydraulic diameter ratio of 38, which is representative of a BIPV/T roof system for 30–45 deg tilt angles. Because of the heating asymmetry in the BIPV/T channel, two average Nusselt number correlations are reported as a function of Reynolds number: one for the top heated surface and the other for the bottom surface. For the top heated surface, the Nusselt number is in the range of 6–48 for Reynolds numbers ranging from 250 to 7500. For the bottom insulated surface, the Nusselt number is in the range of 22–68 for Reynolds numbers ranging from 800 to 7060. This paper presents correlations for the average Nusselt number as a function of Reynolds number; this correlation is considered adequate for the design of BIPV/T systems where forced convection dominates. Local Nusselt number distributions are also presented for laminar and turbulent flow conditions.
ISSN:0199-6231
1528-8986
DOI:10.1115/1.4003145