The Effects of Residual Stress Distribution and Component Geometry on the Stress Intensity Factor of Surface Cracks

The stress intensity factor estimated by the appropriate modeling of components is essential for the evaluation of crack growth behavior in stress corrosion cracking. For the appropriate modeling of a welded component with a crack, it is important to understand the effects of residual stress distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2011-02, Vol.133 (1)
Hauptverfasser: Miyazaki, Katsumasa, Mochizuki, Masahito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stress intensity factor estimated by the appropriate modeling of components is essential for the evaluation of crack growth behavior in stress corrosion cracking. For the appropriate modeling of a welded component with a crack, it is important to understand the effects of residual stress distribution and the geometry of the component on the stress intensity factor of the surface crack. In this study, the stress intensity factors of surface cracks under two assumed residual stress fields were calculated. As residual stress field, a bending type stress field (tension-compression) and a self-equilibrating stress field (tension-compression-tension) through the thickness were assumed, respectively. The geometries of the components were plate and piping. The assumed surface cracks for those evaluations were a long crack in the surface direction and a semi-elliptical surface crack. In addition, crack growth evaluations were conducted to clarify the effects of residual stress distribution and the geometry of the component. Here, the crack growth evaluation means simulating increments of crack depth and length using crack growth properties and stress intensity factors. The effects of residual stress distribution and component geometry on the stress intensity factor of surface cracks and the appropriate modeling of cracked components are discussed by comparing the stress intensity factors and the crack growth evaluations for surface cracks under residual stress fields.
ISSN:0094-9930
1528-8978
DOI:10.1115/1.4002671