On Controlling an Uncertain System With Polynomial Chaos and H2 Control Design
This paper applies the H2 norm along time and parameter domains. The norm is related to the probabilistic H2 problem. It is calculated using polynomial chaos to handle uncertainty in the plant model. The structure of expanded states resulting from Galerkin projections of a state space model with unc...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2010-11, Vol.132 (6) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper applies the H2 norm along time and parameter domains. The norm is related to the probabilistic H2 problem. It is calculated using polynomial chaos to handle uncertainty in the plant model. The structure of expanded states resulting from Galerkin projections of a state space model with uncertain parameters is used to formulate cost functions in terms of mean performances of the states, as well as covariances. Also, bounds on the norm are described in terms of linear matrix inequalitys. The form of the gradient of the norm, which can be used in optimization, is given as a Lyapunov equation. Additionally, this approach can be used to solve the related probabilistic LQR problem. The legitimacy of the concept is demonstrated through two mechanical oscillator examples. These controllers could be easily implemented on physical systems without observing uncertain parameters. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4002474 |