Dynamic Thermomechanical Modeling of a Wet Shape Memory Alloy Actuator
This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water that are alternately pumped through the tube to contract and extend the...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2010-09, Vol.132 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water that are alternately pumped through the tube to contract and extend the wire, respectively. The thermomechanical model presented in this paper accounts for the nonuniform temperature change of the SMA wire due to alternating the temperature of the flow along the wire. The thermal portion of the model consists of analysis of the heat transfer between the fluid and the SMA wire. Heat loss to the environment and the temperature change of the fluid through the actuator are taken into account. Based on this analysis, the temperature of the wire at segments along its length can be determined as a function of time. The mechanical portion of the model approximates the strain-martensite fraction and martensite fraction-temperature relationships. By combining the thermal and mechanical models, the displacement of the wire can be determined as a function of time. The combined thermomechanical model will be useful for predicting the performance of wet SMA actuators in a variety of applications. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4002067 |