Measurements of Density Pulsations in the Outlet Nozzle of a Combustion Chamber by Rayleigh-Scattering Searching Entropy Waves

The development of measurement techniques, which enable temporal and spatial highly resolved density investigations even in harsh environments, is essential. Rayleigh scattering is a noninvasive optical measurement technique permitting such investigations. A Rayleigh-scattering measurement system is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2011-03, Vol.133 (3)
Hauptverfasser: Rausch, Anne, Fischer, Andre, Konle, Holger, Gaertlein, Andrea, Nitsch, Steffen, Knobloch, Karsten, Bake, Friedrich, Röhle, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of measurement techniques, which enable temporal and spatial highly resolved density investigations even in harsh environments, is essential. Rayleigh scattering is a noninvasive optical measurement technique permitting such investigations. A Rayleigh-scattering measurement system is set up, providing a new insight into fluid mechanical processes in turbomachines. In this paper, Rayleigh scattering is used for the detection of density oscillations in the optical accessible convergent-divergent outlet nozzle of a small scale combustion test rig at various power consumptions and equivalence ratios. Until now, this part of the combustion chamber is sparsely investigated due to the challenging measurement conditions. The temporal density oscillation inside the nozzle can be shown up to 4 kHz as well as its spatial distribution. Systematic errors of the setup are investigated. Spectra of pressure and density oscillations are compared. Measurements with nonreacting air flow are conducted to study flow induced density fluctuations. Entropy noise related correlations between density and pressure fluctuations are found. Therewith, the builtup Rayleigh-scattering system enables investigations of the presumed region of indirect noise generation.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4002018