Modeling of Compressed Air Hybrid Operation for a Heavy Duty Diesel Engine
This paper presents the analysis and modeling of a 10.8 l heavy-duty diesel engine modified for operating compressed air hybrid engine cycles. A lumped parameter model is developed to first investigate the engine cylinder-air tank mass and energy interaction. The efficiency of compressed air energy...
Gespeichert in:
Veröffentlicht in: | Journal of engineering for gas turbines and power 2009-09, Vol.131 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the analysis and modeling of a 10.8 l heavy-duty diesel engine modified for operating compressed air hybrid engine cycles. A lumped parameter model is developed to first investigate the engine cylinder-air tank mass and energy interaction. The efficiency of compressed air energy transfer is defined based on the second law of thermodynamics. A high fidelity model is developed using commercially available software (GT-POWER) to capture the effects of engine friction, heat transfer, gas dynamics, etc. Engine valve timing for optimal efficiency in air regeneration and the corresponding engine speed-torque maps are established using the detailed engine model. The compressed air hybrid engine maps are then incorporated into vehicle simulation (ADVISOR) to evaluate the potential fuel economy improvement for a refuse truck under a variety of driving cycles. Depending on the particular driving cycle, the simulation has shown a potential 4–18% fuel economy improvement over the truck equipped with the conventional baseline diesel engine. |
---|---|
ISSN: | 0742-4795 1528-8919 |
DOI: | 10.1115/1.3078788 |