Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading

The common design practice of pressure vessels subjected to variable amplitude loading is based on the application of a linear damage summation rule, also known as the Palmgren–Miner’s rule. Even though damage induced by small stress cycles, below the fatigue limit, are often taken into account in d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2009-04, Vol.131 (2)
Hauptverfasser: Pereira, Hélder F.S.G, De Jesus, Abílio M. P., Ribeiro, Alfredo S., Fernandes, António A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The common design practice of pressure vessels subjected to variable amplitude loading is based on the application of a linear damage summation rule, also known as the Palmgren–Miner’s rule. Even though damage induced by small stress cycles, below the fatigue limit, are often taken into account in design codes of practice by two-slope stress-life curves, the sequential effects of the load history have been neglected. Several studies have shown that linear damage summation rules can predict conservative as well as nonconservative lives depending on the loading sequence. This paper presents experimental results about the fatigue damage accumulation behavior of a structural component made of P355NL1 steel, which is a material usually applied for pressure vessel purposes. The structural component is a rectangular double notched plate, which was subjected to block loading. Each block is characterized by constant remote stress amplitude. Two-block sequences were applied for various combinations of remote stress ranges. Three stress ratios were considered, namely, R=0, R=0.15, and R=0.3. Also, constant amplitude fatigue data are generated for the investigated structural component. In general, the block loading illustrates that the fatigue damage evolves nonlinearly with the number of load cycles and is a function of the load sequence, stress levels, and stress ratios. In particular, a clear load sequence effect is verified for the two-block loading, with null stress ratio. For the other (higher) stress ratios, the load sequence effect is almost negligible; however the damage evolution still is nonlinear. This suggests an important effect of the stress ratio on fatigue damage accumulation.
ISSN:0094-9930
1528-8978
DOI:10.1115/1.3066774