Feedback Linearization Based Generalized Predictive Control of Jupiter Icy Moons Orbiter

This paper presents a nonlinear dynamic model of Jupiter Icy Moons Orbiter (JIMO), a concept design of a spacecraft intended to orbit the three icy moons of Jupiter, namely, Europa, Ganymede, and Callisto. The work in this paper represents a part of the feasibility study conducted to assess control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2009-01, Vol.131 (1)
Hauptverfasser: Shi, Jianjun, Kelkar, Atul G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a nonlinear dynamic model of Jupiter Icy Moons Orbiter (JIMO), a concept design of a spacecraft intended to orbit the three icy moons of Jupiter, namely, Europa, Ganymede, and Callisto. The work in this paper represents a part of the feasibility study conducted to assess control requirements for the JIMO mission. A nonlinear dynamic model of JIMO is derived, which includes rigid body as well as flexible body dynamics. This paper presents a novel hybrid control strategy, which combines feedback linearization with generalized predictive control methodology in a two-step approach for attitude control of the spacecraft. This feedback linearization based generalized predictive control (FLGPC) law is used to accomplish a representative realistic in-orbit maneuver to test the efficacy of the controller. The controller performance shows that the FLGPC is a viable methodology for attitude control of a similar class of spacecraft. The results presented are a part of exhaustive study conducted to evaluate various controller designs.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.3023129