Flow Analysis and Modeling of Field-Controllable, Electro- and Magneto-Rheological Fluid Dampers
This study combines a fluid mechanics-based approach and the Herschel-Bulkley constitutive equation to develop a theoretical model for predicting the behavior of field-controllable, magneto-rheological (MR), and electro-rheological (ER) fluid dampers. The goal is to provide an accurate theoretical m...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2007-01, Vol.74 (1), p.13-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study combines a fluid mechanics-based approach and the Herschel-Bulkley constitutive equation to develop a theoretical model for predicting the behavior of field-controllable, magneto-rheological (MR), and electro-rheological (ER) fluid dampers. The goal is to provide an accurate theoretical model for analysis, design, and development of control algorithms of MR/ER dampers. Simplified explicit expressions for closed-form solution of the pressure drop across a MR fluid valve are developed. The Herschel-Bulkley quasi-steady flow analysis is extended to include the effect of fluid compressibility to account for the nonlinear dynamic behavior of MR/ER fluid dampers. The advantage of this model is that it only depends on geometric and material properties of the MR/ER material and the device. The theoretical results are validated by an experimental study. It is demonstrated that the proposed model can effectively predict the nonlinear behavior of field-controllable fluid dampers. |
---|---|
ISSN: | 0021-8936 1528-9036 |
DOI: | 10.1115/1.2166649 |