Optical Observation of the Supercavitation Induced by High-Speed Water Entry

When a high-speed projectile penetrates into water, a cavity is formed behind the projectile. The gas enclosed in the cavity experiences a nonequilibrium process, i.e., the gas pressure decreases as the projectile moves more deeply into water. As a result, the cavity is sealed near the free surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2000-12, Vol.122 (4), p.806-810
Hauptverfasser: Shi, Hong-Hui, Itoh, Motoyuki, Takami, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a high-speed projectile penetrates into water, a cavity is formed behind the projectile. The gas enclosed in the cavity experiences a nonequilibrium process, i.e., the gas pressure decreases as the projectile moves more deeply into water. As a result, the cavity is sealed near the free surface (surface closure) and subsequently the cavity breaks up in water (deep closure). Accompanying the break-up of the cavity, secondary shock waves appear. This is the so-called supercavitation in water entry. This paper describes an experimental investigation into the water entry phenomenon. Projectiles of 342 m/s were generated from a small-bore rifle that was fixed vertically in the experimental facility. The projectiles were fired into a windowed water tank. A shadowgraph optical observation was performed to observe the entry process of the projectile and the formation and collapse of the cavity behind the projectile. A number of interesting observations relating to the motion of the free surface, the splash, the underwater bubbly flow and so on were found. [S0098-2202(00)00204-2]
ISSN:0098-2202
1528-901X
DOI:10.1115/1.1310575