Low-Order Models for Very Short Hybrid Gas Bearings
A low-order model was created to analyze a small-scale gas bearing with a diameter of 4.1 mm, designed to spin at 2.4 million rpm. Due to microfabrication constraints, the bearing lies outside the standard operating space and stable operation is a challenge. The model is constructed by reference to...
Gespeichert in:
Veröffentlicht in: | Journal of tribology 2001-04, Vol.123 (2), p.368-375 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A low-order model was created to analyze a small-scale gas bearing with a diameter of 4.1 mm, designed to spin at 2.4 million rpm. Due to microfabrication constraints, the bearing lies outside the standard operating space and stable operation is a challenge. The model is constructed by reference to Newton’s second law for the rotor and employs stiffness and damping coefficients predicted by other models. At any operating point it is able to predict (1) whether the journal can sustain stable operation, and (2) the whirling frequency of the journal. Analysis shows that the best way to operate the bearing is in a hybrid mode where the bearing relies on hydrostatics at low speeds and hydrodynamics at high speeds. However, in transitioning from hydrostatic to hydrodynamic operation, the model shows that the bearing is prone to instability problems and great care must be taken in scheduling the bearing pressurization system in the course of accelerating through low and intermediate rotational speeds. |
---|---|
ISSN: | 0742-4787 1528-8897 |
DOI: | 10.1115/1.1308000 |