Low-Order Models for Very Short Hybrid Gas Bearings

A low-order model was created to analyze a small-scale gas bearing with a diameter of 4.1 mm, designed to spin at 2.4 million rpm. Due to microfabrication constraints, the bearing lies outside the standard operating space and stable operation is a challenge. The model is constructed by reference to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tribology 2001-04, Vol.123 (2), p.368-375
Hauptverfasser: Savoulides, N, Breuer, K. S, Jacobson, S, Ehrich, F. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A low-order model was created to analyze a small-scale gas bearing with a diameter of 4.1 mm, designed to spin at 2.4 million rpm. Due to microfabrication constraints, the bearing lies outside the standard operating space and stable operation is a challenge. The model is constructed by reference to Newton’s second law for the rotor and employs stiffness and damping coefficients predicted by other models. At any operating point it is able to predict (1) whether the journal can sustain stable operation, and (2) the whirling frequency of the journal. Analysis shows that the best way to operate the bearing is in a hybrid mode where the bearing relies on hydrostatics at low speeds and hydrodynamics at high speeds. However, in transitioning from hydrostatic to hydrodynamic operation, the model shows that the bearing is prone to instability problems and great care must be taken in scheduling the bearing pressurization system in the course of accelerating through low and intermediate rotational speeds.
ISSN:0742-4787
1528-8897
DOI:10.1115/1.1308000