Frictionally Excited Thermoelastic Instability in Automotive Drum Brakes
Thermoelastic instability in automotive drum brake systems is investigated using a finite layer model with one-sided frictional heating. With realistic material properties of automotive brakes, the stability behavior of the one-sided heating mode is similar to that of the antisymmetric mode of two-s...
Gespeichert in:
Veröffentlicht in: | Journal of tribology 2000-10, Vol.122 (4), p.849-855 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoelastic instability in automotive drum brake systems is investigated using a finite layer model with one-sided frictional heating. With realistic material properties of automotive brakes, the stability behavior of the one-sided heating mode is similar to that of the antisymmetric mode of two-sided heating but the critical speed of the former is higher than that of the latter. The effects of the friction coefficient and brake material properties on the critical speeds are examined and the most influential properties are found to be the coefficient of friction and the thermal expansion coefficient of drum materials. Vehicle tests were performed to observe the critical speeds of the drum brake systems with aluminum drum materials. Direct comparisons are made between the calculation and measurement for the critical speed and hot spot spacing. Good agreement is achieved when the critical speeds are calculated using the temperature-dependent friction material properties and the reduced coefficient of friction to account for the effect of intermittent contact. [S0742-4787(00)01503-4] |
---|---|
ISSN: | 0742-4787 1528-8897 |
DOI: | 10.1115/1.1286207 |