Extensions of Veech groups I: A hyperbolic action
Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main res...
Gespeichert in:
Veröffentlicht in: | Journal of topology 2023-06, Vol.16 (2), p.757-805 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 805 |
---|---|
container_issue | 2 |
container_start_page | 757 |
container_title | Journal of topology |
container_volume | 16 |
creator | Dowdall, Spencer Durham, Matthew G. Leininger, Christopher J. Sisto, Alessandro |
description | Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ$\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ$\Gamma$. This action is a key ingredient in the sequel where we show that Γ$\Gamma$ is hierarchically hyperbolic and quasi‐isometrically rigid. |
doi_str_mv | 10.1112/topo.12296 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_topo_12296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO12296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1986-2b970bae48bd0d6f1b8cf4a29d15c940da426c46914a46b84cb3bcbf225e37413</originalsourceid><addsrcrecordid>eNp9j0FLwzAYhoMoOKcXf0HOQme-9GvaeBtj6mBQD9NrSNLEVepSkoru37tZ8ejpfQ_P-8JDyDWwGQDw2yH0YQacS3FCJlAWeVYhx9O_DuKcXKT0xpjgLBcTAsuvwe1SG3aJBk9fnLNb-hrDR5_o6o7O6Xbfu2hC11qq7XDgLsmZ111yV785Jc_3y83iMVvXD6vFfJ1ZkJXIuJElM9phZRrWCA-msh41lw0UViJrNHJhUUhAjcJUaE1urPGcFy4vEfIpuRl_bQwpRedVH9t3HfcKmDrKqqOs-pE9wDDCn23n9v-QalM_1ePmGxdWVrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extensions of Veech groups I: A hyperbolic action</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dowdall, Spencer ; Durham, Matthew G. ; Leininger, Christopher J. ; Sisto, Alessandro</creator><creatorcontrib>Dowdall, Spencer ; Durham, Matthew G. ; Leininger, Christopher J. ; Sisto, Alessandro</creatorcontrib><description>Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ$\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ$\Gamma$. This action is a key ingredient in the sequel where we show that Γ$\Gamma$ is hierarchically hyperbolic and quasi‐isometrically rigid.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/topo.12296</identifier><language>eng</language><ispartof>Journal of topology, 2023-06, Vol.16 (2), p.757-805</ispartof><rights>2023 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1986-2b970bae48bd0d6f1b8cf4a29d15c940da426c46914a46b84cb3bcbf225e37413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Ftopo.12296$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Ftopo.12296$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dowdall, Spencer</creatorcontrib><creatorcontrib>Durham, Matthew G.</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Sisto, Alessandro</creatorcontrib><title>Extensions of Veech groups I: A hyperbolic action</title><title>Journal of topology</title><description>Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ$\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ$\Gamma$. This action is a key ingredient in the sequel where we show that Γ$\Gamma$ is hierarchically hyperbolic and quasi‐isometrically rigid.</description><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9j0FLwzAYhoMoOKcXf0HOQme-9GvaeBtj6mBQD9NrSNLEVepSkoru37tZ8ejpfQ_P-8JDyDWwGQDw2yH0YQacS3FCJlAWeVYhx9O_DuKcXKT0xpjgLBcTAsuvwe1SG3aJBk9fnLNb-hrDR5_o6o7O6Xbfu2hC11qq7XDgLsmZ111yV785Jc_3y83iMVvXD6vFfJ1ZkJXIuJElM9phZRrWCA-msh41lw0UViJrNHJhUUhAjcJUaE1urPGcFy4vEfIpuRl_bQwpRedVH9t3HfcKmDrKqqOs-pE9wDDCn23n9v-QalM_1ePmGxdWVrg</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Dowdall, Spencer</creator><creator>Durham, Matthew G.</creator><creator>Leininger, Christopher J.</creator><creator>Sisto, Alessandro</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202306</creationdate><title>Extensions of Veech groups I: A hyperbolic action</title><author>Dowdall, Spencer ; Durham, Matthew G. ; Leininger, Christopher J. ; Sisto, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1986-2b970bae48bd0d6f1b8cf4a29d15c940da426c46914a46b84cb3bcbf225e37413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowdall, Spencer</creatorcontrib><creatorcontrib>Durham, Matthew G.</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Sisto, Alessandro</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowdall, Spencer</au><au>Durham, Matthew G.</au><au>Leininger, Christopher J.</au><au>Sisto, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensions of Veech groups I: A hyperbolic action</atitle><jtitle>Journal of topology</jtitle><date>2023-06</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>757</spage><epage>805</epage><pages>757-805</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ$\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ$\Gamma$. This action is a key ingredient in the sequel where we show that Γ$\Gamma$ is hierarchically hyperbolic and quasi‐isometrically rigid.</abstract><doi>10.1112/topo.12296</doi><tpages>49</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-8416 |
ispartof | Journal of topology, 2023-06, Vol.16 (2), p.757-805 |
issn | 1753-8416 1753-8424 |
language | eng |
recordid | cdi_crossref_primary_10_1112_topo_12296 |
source | Wiley Online Library Journals Frontfile Complete |
title | Extensions of Veech groups I: A hyperbolic action |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensions%20of%20Veech%20groups%20I:%20A%20hyperbolic%20action&rft.jtitle=Journal%20of%20topology&rft.au=Dowdall,%20Spencer&rft.date=2023-06&rft.volume=16&rft.issue=2&rft.spage=757&rft.epage=805&rft.pages=757-805&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/topo.12296&rft_dat=%3Cwiley_cross%3ETOPO12296%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |