Extensions of Veech groups I: A hyperbolic action
Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main res...
Gespeichert in:
Veröffentlicht in: | Journal of topology 2023-06, Vol.16 (2), p.757-805 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a lattice Veech group in the mapping class group of a closed surface S$S$, this paper investigates the geometry of Γ$\Gamma$, the associated π1S$\pi _1S$‐extension group. We prove that Γ$\Gamma$ is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ$\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ$\Gamma$. This action is a key ingredient in the sequel where we show that Γ$\Gamma$ is hierarchically hyperbolic and quasi‐isometrically rigid. |
---|---|
ISSN: | 1753-8416 1753-8424 |
DOI: | 10.1112/topo.12296 |