Tight contact structures on Seifert surface complements

We consider complements of standard Seifert surfaces of special alternating links. On these handlebodies, we use Honda's method to enumerate those tight contact structures whose dividing sets are isotopic to the link, and find their number to be the leading coefficient of the Alexander polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2020-06, Vol.13 (2), p.730-776
Hauptverfasser: Kálmán, Tamás, Mathews, Daniel V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider complements of standard Seifert surfaces of special alternating links. On these handlebodies, we use Honda's method to enumerate those tight contact structures whose dividing sets are isotopic to the link, and find their number to be the leading coefficient of the Alexander polynomial. The Euler classes of the contact structures are identified with hypertrees in a certain hypergraph. Using earlier work, this establishes a connection between contact topology and the Homfly polynomial. We also show that the contact invariants of our tight contact structures form a basis for sutured Floer homology. Finally, we relate our methods and results to Kauffman's formal knot theory.
ISSN:1753-8416
1753-8424
DOI:10.1112/topo.12144